

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

version: v3.0.0-beta5

Best Practice

When using Helmsman, we recommend the following best practices:

	Add useful metadata in your desired state files (DSFs) so that others (who have access to them) can understand what your DSF is for. We recommend the following metadata: organization, maintainer (name and email), and description/purpose.

	Define context (see the DSF spec) for each DSF. This helps prevent different DSFs from operating on each other’s releases.

	Store your DSFs in git (or any other VCS) so that you have an audit trail of your deployments. You can also rollback to a previous state by going back to previous commits.

Rollback can be more complex regarding application data.

	Do not store secrets in your DSFs! Use one of the supported ways to pass secrets to your releases.

	To protect against accidental operations, define certain namespaces (e.g, production) as protected namespaces (supported in v1.0.0+) and deploy your production-ready releases there.

	If you use multiple desired state files (DSFs) with the same cluster, make sure your namespace protection definitions are identical across all DSFs.

	When using multiple DSFs, make sure that apps managed in the same namespace are in one DSF. This avoids the need for defining the same namespace (with its settings) across multiple DSFs

	Don’t maintain the same release in multiple DSFs.

	While the decision on how many DSFs to use and what each can contain is up to you and depends on your case, we recommend coming up with your own rules for how to split them. For example, you can have one for infra (3rd party tools), one for staging, and one for production apps.

version: v3.0.0

CMD reference

This lists available CMD options in Helmsman:

you can find the CMD options for the version you are using by typing: helmsman -h or helmsman --help

--always-upgrade
upgrade release even if no changes are found.

--apply
apply the plan directly.

--context-override string
override releases context defined in release state with this one.

--debug
show the debug execution logs and actual helm/kubectl commands. This can log secrets and should only be used for debugging purposes.

--verbose
show verbose execution logs.

--destroy
delete all deployed releases.

-detailed-exit-code
returns a detailed exit code (0 - no changes, 1 - error, 2 - changes present)

--diff-context num
number of lines of context to show around changes in helm diff output.

-p
max number of concurrent helm releases to run

--dry-run
apply the dry-run (do not update) option for helm commands.

-e value
additional file(s) to load environment variables from, may be supplied more than once, it extends default .env file lookup, every next file takes precedence over previous ones in case of having the same environment variables defined.
If a .env file exists, it will be loaded by default, if additional env files are specified using the -e flag, the environment file will be loaded in order where the last file will take precedence.

-f value
desired state file name(s), may be supplied more than once to merge state files.

--force-upgrades
use –force when upgrading helm releases. May cause resources to be recreated.

--keep-untracked-releases
keep releases that are managed by Helmsman from the used DSFs in the command, and are no longer tracked in your desired state.

--kubeconfig
path to the kubeconfig file to use for CLI requests. Defaults to false if the helm diff plugin is installed.

--kubectl-diff
Use kubectl diff instead of helm diff

--migrate-context
Updates the context name for all apps defined in the DSF and applies Helmsman labels. Using this flag is required if you want to change context name after it has been set.

--no-banner
don’t show the banner.

--no-color
don’t use colors.

--no-env-subst
turn off environment substitution globally.

--subst-env-values
turn on environment substitution in values files.

--no-fancy
don’t display the banner and don’t use colors.

--no-ns
don’t create namespaces.

--no-ssm-subst
turn off SSM parameter substitution globally.

--replace-on-rename
uninstall the existing release when a chart with a different name is used.

--spec string
specification file name, contains locations of desired state files to be merged

--subst-ssm-values
turn on SSM parameter substitution in values files.

--ns-override string
override defined namespaces with this one.

--show-diff
show helm diff results. Can expose sensitive information.

--skip-validation
skip desired state validation.

--target
limit execution to specific app.

--exclude-target
exclude specific app from execution.

--group
limit execution to specific group of apps.

--exclude-group
exclude specific group of apps from execution.

--update-deps
run ‘helm dep up’ for local chart

--check-for-chart-updates
compares the chart versions in the state file to the latest versions in the chart repositories and shows available updates

--v show the version.

version: v3.0.0-beta5

Deployment Strategies

This document describes the different strategies to use Helmsman for maintaining your helm charts deployment to k8s clusters.

Deploying 3rd party charts (apps) in a production cluster

Suppose you are deploying 3rd party charts (e.g. Jenkins, Jira … etc.) in your cluster. These applications can be deployed with Helmsman using a single desired state file. The desired state tells helmsman to deploy these apps into certain namespaces in a production cluster.

You can test 3rd party charts in designated namespaces (e.g, staging) within the same production cluster. This also can be defined in the same desired state file. Below is an example of a desired state file for deploying 3rd party apps in production and staging namespaces:

[metadata]
 org = "example"

using a minikube cluster
[settings]
 kubeContext = "minikube"

[namespaces]
 [namespaces.staging]
 protected = false
 [namespaces.production]
 protected = true

[helmRepos]
 jenkins = https://charts.jenkins.io
 center = https://repo.chartcenter.io

[apps]

 [apps.jenkins]
 name = "jenkins-prod" # should be unique across all apps
 description = "production jenkins"
 namespace = "production"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1" # chart version
 valuesFiles = ["../my-jenkins-common-values.yaml", "../my-jenkins-production-values.yaml"]

 [apps.artifactory]
 name = "artifactory-prod" # should be unique across all apps
 description = "production artifactory"
 namespace = "production"
 enabled = true
 chart = "jfrog/artifactory"
 version = "11.4.2" # chart version
 valuesFile = "../my-artificatory-production-values.yaml"

 # the jenkins release below is being tested in the staging namespace
 [apps.jenkins-test]
 name = "jenkins-test" # should be unique across all apps
 description = "test release of jenkins, testing xyz feature"
 namespace = "staging"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1" # chart version
 valuesFiles = ["../my-jenkins-common-values.yaml", "../my-jenkins-testing-values.yaml"]

metadata:
 org: "example"

using a minikube cluster
settings:
 kubeContext: "minikube"

namespaces:
 staging:
 protected: false
 production:
 protected: true

helmRepos:
 jenkins: https://charts.jenkins.io
 jfrog: https://charts.jfrog.io

apps:
 jenkins:
 name: "jenkins-prod" # should be unique across all apps
 description: "production jenkins"
 namespace: "production"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1" # chart version
 valuesFile: "../my-jenkins-production-values.yaml"

 artifactory:
 name: "artifactory-prod" # should be unique across all apps
 description: "production artifactory"
 namespace: "production"
 enabled: true
 chart: "jfrog/artifactory"
 version: "11.4.2" # chart version
 valuesFile: "../my-artifactory-production-values.yaml"

 # the jenkins release below is being tested in the staging namespace
 jenkins-test:
 name: "jenkins-test" # should be unique across all apps
 description: "test release of jenkins, testing xyz feature"
 namespace: "staging"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1" # chart version
 valuesFile: "../my-jenkins-testing-values.yaml"

You can split the desired state file into multiple files if your deployment pipelines requires that, but it is important to read the notes below on using multiple desired state files with one cluster.

Working with multiple clusters

If you use multiple clusters for multiple purposes, you need at least one Helmsman desired state file for each cluster.

Deploying your dev charts

If you are developing your own applications/services and packaging them in helm charts, it makes sense to automatically deploy these charts to a staging namespace or a dev cluster on every source code commit.

Often, you would have multiple apps developed in separate source code repositories but you would like to test their deployment in the same cluster/namespace. In that case, Helmsman can be used as part of your CI pipeline as described in the diagram below:

as of v1.1.0 , you can use the ns-overrideflag to force helmsman to deploy/move all apps into a given namespace. For example, you could use this flag in a CI job that gets triggered on commits to the dev branch to deploy all apps into the staging namespace.

[image: _images/multi-DSF.png]multi-DSF

Each repository will have a Helmsman desired state file (DSF). But it is important to consider the notes below on using multiple desired state files with a single cluster.

If you need supporting applications (charts) for your application (e.g, reverse proxies, DB, k8s dashboard, etc.), you can describe the desired state for these in a separate file which can live in another repository. Adding such a file in the pipeline where you create your cluster from code makes total “DevOps” sense.

Notes on using multiple Helmsman desired state files for the same cluster

Helmsman v3.0.0-beta5 introduces the context stanza.
When having multiple DSFs operating on different releases, it is essential to use the context stanza in each DSF to define what context the DSF covers. The user-provided value for context is used by Helmsman to label and distinguish which DSF manages which deployed releases in the cluster. This way, each helmsman operation will only operate on releases within the context defined in the DSF.

When having multiple DSFs be aware of the following:

	If no context is provided in the DSF (or merged DSFs), default is applied as a default context. This means any set of DSFs that don’t define custom contexts can still operate on each other’s releases (same behavior as in Helmsman 1.x).

	If you don’t define context in your DSFs, you would need to use the --keep-untracked-releases flag to avoid different DSFs deleting each other’s releases.

	When merging multiple DSFs in one Helmsman operation, context from the firs DSF in the list gets overridden by the context in the last DSF.

	If multiple DSFs use the same context name, they will mess up each other’s releases.

	If two releases from two different DSFs (each with its own context) have the same name and namespace, Helmsman will only allow the first one of them to be installed. The second will be blocked by Helmsman.

	If you deploy releases from multiple DSF to one namespace (not recommended!), that namespace’s protection config does not automatically cascade between DSFs. You will have to enable the protection in each of the DSFs.

Also please refer to the best practice document.

version: v3.8.2

Helmsman desired state specification

This document describes the specification for how to write your Helm charts’ desired state file. This can be either a Toml [https://github.com/toml-lang/toml] or Yaml [http://yaml.org/] formatted file. The desired state file consists of:

	Metadata [Optional] – metadata for any human reader of the desired state file.

	Certificates [Optional] – only needed when you want Helmsman to connect kubectl to your cluster for you.

	Context [optional] – define the context in which a DSF is used.

	Settings [Optional] – data about your k8s cluster and how to deploy Helm on it if needed.

	Namespaces – defines the namespaces where you want your Helm charts to be deployed.

	Helm Repos [Optional] – defines the repos where you want to get Helm charts from.

	Apps – defines the applications/charts you want to manage in your cluster.

You can use environment variables in the desired state files. The environment variable name should start with “$”, or encapsulated in “${”, “}”. “$” characters can be escaped like “$$”.

Starting from v1.9.0, you can also use environment variables in your helm values/secrets files.

Metadata

Optional : Yes.

Synopsis: Metadata is used for the human reader of the desired state file. While it is optional, we recommend having a maintainer and scope/cluster metadata.

Options:

	you can define any key/value pairs.

Example:

[metadata]
scope = "cluster foo"
maintainer = "k8s-admin"

metadata:
 scope: "cluster foo"
 maintainer: "k8s-admin"

Certificates

Optional : Yes, only needed if you want Helmsman to connect kubectl to your cluster for you.

Synopsis: defines where to find the certificates needed for connecting kubectl to a k8s cluster. If connection settings (username/password/clusterAPI) are provided in the Settings section below, then you need AT LEAST to provide caCrt and caKey. You can optionally provide a client certificate (caClient) depending on your cluster connection setup.

Options:

	caCrt : a valid URL/S3/GCS/Azure bucket or local relative file path to a certificate file.

	caKey : a valid URL/S3/GCS/Azure bucket or local relative file path to a client key file.

	caClient: a valid URL/S3/GCS/Azure bucket or local relative file path to a client certificate file.

bucket format is: [s3 or gs or az]://bucket-name/dir1/dir2/…/file.extension

Example:

[certificates]
caCrt = "s3://myS3bucket/mydir/ca.crt"
caKey = "gs://myGCSbucket/ca.key"
#caKey = "az://myAzureContainer/ca.key
caClient ="../path/to/my/local/client-certificate.crt"
#caClient = "$CA_CLIENT"

certificates:
 caCrt: "s3://myS3bucket/mydir/ca.crt"
 caKey: "gs://myGCSbucket/ca.key"
 #caKey: "az://myAzureContainer/ca.key
 caClient: "../path/to/my/local/client-certificate.crt"
 #caClient: "$CA_CLIENT"

Context

Optional : Yes.

Synopsis: defines the context in which a DSF is used. This context is used as the ID of that specific DSF and must be unique across the used DSFs. If not defined, default is used. Check here for more details on the limitations.

Renaming the Helmsman context can be done from v3.2.0 using the --migrate-context flag. Check this guide for details.

context: prod-apps
...

Settings

Optional : Yes.

Synopsis: provides settings for connecting to your k8s cluster.

If you don’t provide the settings stanza, helmsman would use your current kube context.

Options:

	kubeContext : the kube context you want Helmsman to use or create. Helmsman will try connect to this context first, if it does not exist, it will try to create it (i.e. connect to a k8s cluster) using the options below.

The following options can be skipped if your kubectl context is already created and you don’t want Helmsman to connect kubectl to your cluster for you.

	username : the username to be used for kubectl credentials.

	password : an environment variable name (starting with $) where your password is stored. Get the password from your k8s admin or consult k8s docs on how to get/set it.

	clusterURI : the URI for your cluster API or the name of an environment variable (starting with $) containing the URI.

	bearerToken: whether you want helmsman to connect to the cluster using a bearer token. Default is false

	bearerTokenPath: optional. If bearer token is used, you can specify a custom location (URL, cloud bucket, local file path) for the token file.

	storageBackend : by default Helm v3 stores release information in secrets, using secrets for storage is recommended for security.

	slackWebhook : a Slack [http://slack.com] Webhook URL to receive Helmsman notifications. This can be passed directly or in an environment variable.

	msTeamsWebhook : a Microsoft Teams [https://www.microsoft.com/pl-pl/microsoft-teams/group-chat-software] Webhook URL to receive Helmsman notifications. This can be passed directly or in an environment variable.

	reverseDelete : if set to true it will reverse the priority order whilst deleting.

	namespaceLabelsAuthoritative : if set to true it will remove all the namespace’s labels that are not defined in DSL for particular namespace

	vaultEnabled: if set to true it will use helm-vault [https://github.com/Just-Insane/helm-vault] to decrypt secret files instead of using default helm-secrets

	vaultDeliminator: secret deliminator used when parsing value files. See helm-vault [https://github.com/Just-Insane/helm-vault#available-flags] docs

	vaultPath: vault path (secret mount location in Vault). See helm-vault [https://github.com/Just-Insane/helm-vault#available-flags] docs

	vaultMountPoint: vault secret engine mount point. See helm-vault [https://github.com/Just-Insane/helm-vault#available-flags] docs

	vaultTemplate: substring with path to vault key instead of deliminator. See helm-vault [https://github.com/Just-Insane/helm-vault#available-flags] docs

	vaultKvVersion: version of the KV secrets engine in Vault. See helm-vault [https://github.com/Just-Insane/helm-vault#available-flags] docs

	vaultEnvironment: environment that secrets should be stored under. See helm-vault [https://github.com/Just-Insane/helm-vault#available-flags] docs

	eyamlEnabled : if set to true it will use hiera-eyaml [https://github.com/voxpupuli/hiera-eyaml] to decrypt secret files instead of using default helm-secrets based on sops

	eyamlPrivateKeyPath : if set with path to the eyaml private key file, it will use it instead of looking for default one in ./keys directory relative to where Helmsman were run. It needs to be defined in conjunction with eyamlPublicKeyPath.

	eyamlPublicKeyPath : if set with path to the eyaml public key file, it will use it instead of looking for default one in ./keys directory relative to where Helmsman were run. It needs to be defined in conjunction with eyamlPrivateKeyPath.

	globalHooks : defines global lifecycle hooks to apply yaml manifest before and/or after different helmsman operations. Check here for more details.

	globalMaxHistory : defines the global maximum number of helm revisions state (secrets/configmap) to keep. Releases can override this global value by setting maxHistory. If both are not set or are set to 0, it is defaulted to 10.

	skipIgnoredApps : if set to true apps, that would normally be listed in the plan as ignored, will be skipped. They won’t show up on the plan output and won’t be considered in decisions. This is especially useful when using -target or -group flags with significant amount of apps where most of them show up as ignored in the plan output making it hard to read.

	skipPendingApps : if set to true apps that are in a pending (install/upgrade/rollback) state or being deleted, will be ignored, when set to false Helmsman will stop if apps are found in these states.

Example:

[settings]
kubeContext = "minikube"
username = "admin"
password = "$K8S_PASSWORD"
clusterURI = "https://192.168.99.100:8443"
clusterURI= "$K8S_URI"
storageBackend = "secret"
slackWebhook = $MY_SLACK_WEBHOOK
msTeamsWebhook = $MY_MS_TEAMS_WEBHOOK
reverseDelete = false
eyamlEnabled = true
eyamlPrivateKeyPath = "../keys/custom-key.pem"
eyamlPublicKeyPath = "../keys/custom-key.pub"
vaultEnabled = false
[settings.globalHooks]
successCondition= "Complete"
deleteOnSuccess= true
postInstall= "job.yaml"
globalMaxHistory= 10

settings:
 kubeContext: "minikube"
 #username: "admin"
 #password: "$K8S_PASSWORD"
 #clusterURI: "https://192.168.99.100:8443"
 ##clusterURI: "$K8S_URI"
 #storageBackend: "secret"
 #slackWebhook: "$MY_SLACK_WEBHOOK"
 #msTeamsWebhook: "$MY_MS_TEAMS_WEBHOOK"
 #reverseDelete: false
 # eyamlEnabled: true
 # eyamlPrivateKeyPath: ../keys/custom-key.pem
 # eyamlPublicKeyPath: ../keys/custom-key.pub
 # vaultEnabled: false
 # globalHooks:
 # successCondition: "Complete"
 # deleteOnSuccess: true
 # preInstall: "job.yaml"
 globalMaxHistory: 10

Namespaces

Optional : No.

Synopsis: defines the namespaces to be used/created in your k8s cluster and whether they are protected or not. You can add as many namespaces as you need.
If a namespace does not already exist, Helmsman will create it.

Options:

	protected : defines if a namespace is protected (true or false). Default false.

For the definition of what a protected namespace means, check the protection guide

	labels : defines labels to be added to the namespace, doesn’t remove existing labels but updates them if the label key exists with any other different value. You can define any key/value pairs. Default is empty.

	annotations : defines annotations to be added to the namespace. It behaves the same way as the labels option.

	limits : defines a LimitRange [https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/memory-default-namespace/] to be configured on the namespace

Example:

[namespaces]
[namespaces.staging]
[namespaces.dev]
protected = false
[namespaces.production]
protected = true
[namespaces.production.labels]
env = "prod"
[namespaces.production.annotations]
iam.amazonaws.com/role = "dynamodb-reader"
[[namespaces.production.limits]]
type = "Container"
[namespaces.production.limits.default]
cpu = "300m"
memory = "200Mi"
[namespaces.production.limits.defaultRequest]
cpu = "200m"
memory = "100Mi"
[[namespaces.production.limits]]
type = "Pod"
[namespaces.production.limits.max]
memory = "300Mi"

namespaces:
 staging:
 dev:
 protected: false
 production:
 protected: true
 limits:
 - type: Container
 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 - type: Pod
 max:
 memory: "300Mi"
 labels:
 env: "prod"
 annotations:
 iam.amazonaws.com/role: "dynamodb-reader"

Helm Repos

Optional : Yes.

Synopsis: defines the Helm repos where your charts can be found. You can add as many repos as you need. Public repos can be added without any additional setup. Private repos require authentication.

As of version v0.2.0, both AWS S3 and Google GCS buckets can be used for private repos (using the Helm S3 [https://github.com/hypnoglow/helm-s3] and Helm GCS [https://github.com/nouney/helm-gcs] plugins).

As of version v1.8.0, you can use private repos with basic auth and you can use pre-configured helm repos.

Authenticating to private cloud helm repos:

	For S3 repos: you need to have valid AWS access keys in your environment variables. See here [https://github.com/hypnoglow/helm-s3#note-on-aws-authentication] for more details.

	For GCS repos: check here [https://www.terraform.io/docs/providers/google/index.html#authentication-json-file] for getting the required authentication file. Once you have the file, you have two options, either:

	set GOOGLE_APPLICATION_CREDENTIALS environment variable to contain the absolute path to your Google cloud credentials.json file.

	Or, set GCLOUD_CREDENTIALS environment variable to contain the content of the credentials.json file.

You can also provide basic auth to access private repos that support basic auth. See the example below.

Options:

	you can define any key/value pair where the key is the repo name and value is a valid URI for the repo. Basic auth info can be added in the repo URL as in the example below.

Example:

[helmRepos]
autoscaler = https://kubernetes.github.io/autoscaler
grafana = https://grafana.github.io/helm-charts
myS3repo = "s3://my-S3-private-repo/charts"
myGCSrepo = "gs://my-GCS-private-repo/charts"
myPrivateRepo = "https://user:$TOP_SECRET_PASSWORD@mycustomprivaterepo.org"

helmRepos:
 autoscaler: https://kubernetes.github.io/autoscaler
 grafana: https://grafana.github.io/helm-charts
 myS3repo: "s3://my-S3-private-repo/charts"
 myGCSrepo: "gs://my-GCS-private-repo/charts"
 myPrivateRepo: "https://user:$TOP_SECRET_PASSWORD@mycustomprivaterepo.org"

Preconfigured Helm Repos

Optional : Yes.

Synopsis: defines the list of helm repositories that the helmsman will consider already preconfigured and thus will not try to overwrite it’s configuration.

The primary use-case is if you have some helm repositories that require HTTP basic authentication and you don’t want to store the password in the desired state file or as an environment variable. In this case you can execute the following sequence to have those repositories configured:

In this case you will need to execute helm repo add myrepo1 <URL> --username= --password= manually first.

Set up the helmsman configuration:

preconfiguredHelmRepos = ["myrepo1", "myrepo2"]

preconfiguredHelmRepos:
- myrepo1
- myrepo2

AppsTemplates

This feature is only for YAML.

Optional : Yes.

Synopsis: allows for YAML (TOML has no variable reference support) object creation, that is ignored by state file importer, but can be used as a reference with YAML anchors to not repeat yourself. Read this [https://blog.daemonl.com/2016/02/yaml.html] example about YAML anchors.

Examples:

helmRepos:
 jenkins: https://charts.jenkins.io

appsTemplates:

 default: &template
 valuesFile: ""
 test: true
 protected: false
 wait: true
 enabled: true

 custom: &template_custom
 valuesFile: ""
 test: true
 protected: false
 wait: false
 enabled: true

apps:
 jenkins:
 <<: *template
 name: "jenkins-stage"
 namespace: "staging"
 chart: "jenkins/jenkins"
 version: "0.9.2"
 priority: -3

 jenkins2:
 <<: *template_custom
 name: "jenkins-prod"
 namespace: "production"
 chart: "jenkins/jenkins"
 version: "0.9.0"
 priority: -2

Apps

Optional : Yes.

Synopsis: defines the releases (instances of Helm charts) you would like to manage in your k8s cluster.

Releases must have unique names which are defined under apps. Example: in [apps.jenkins], the release name will be jenkins and it should be unique within the DSF.

Options:

Required

	namespace : the namespace where the release should be deployed. The namespace should map to one of the ones defined in namespaces.

	enabled : describes the required state of the release (true for enabled, false for disabled). Once a release is deployed, you can change it to false if you want to delete this release [default is false].

	chart : the chart name. It should contain the repo name as well. Example: repoName/chartName. Changing the chart name means delete and reinstall this release using the new Chart.

	version : the chart version.

Optional

	group : group name this apps belongs to. It has no effect until Helmsman’s flag -group is passed. Check this doc for more details.

	description : a release metadata for human readers.

	valuesFile : a valid path (URL, cloud bucket, local absolute/relative file path) to custom Helm values.yaml file. File extension must be yaml. Cannot be used with valuesFiles together. Leaving it empty uses the default chart values.

	valuesFiles : array of valid paths (URL, cloud bucket, local absolute/relative file path) to custom Helm values.yaml file. File extension must be yaml. Cannot be used with valuesFile together. Leaving it empty uses the default chart values.

The values file(s) path is resolved when the DSF yaml/toml file is loaded, relative to the path that the dsf was loaded from.

	secretsFile : a valid path (URL, cloud bucket, local absolute/relative file path) to custom Helm secrets.yaml file. File extension must be yaml. Cannot be used with secretsFiles together. Leaving it empty uses the default chart secrets.

	secretsFiles : array of valid paths (URL, cloud bucket, local absolute/relative file path) to custom Helm secrets.yaml file. File extension must be yaml. Cannot be used with secretsFile together. Leaving it empty uses the default chart secrets.

The secrets file(s) path is resolved when the DSF yaml/toml file is loaded, relative to the path that the dsf was loaded from.
To use the secrets files you must have the helm-secrets plugin

	test : defines whether to run the chart tests whenever the release is installed. Default is false.

	protected : defines if the release should be protected against changes. Namespace-level protection has higher priority than this flag. Check the protection guide for more details. Default is false.

	wait : defines whether Helmsman should block execution until all k8s resources are in a ready state. Default is false.

	timeout : helm timeout in seconds. Default 300 seconds.

	noHooks : helm noHooks option. If true, it will disable pre/post upgrade hooks. Default is false.

	priority : defines the priority of applying operations on this release. Only negative values allowed and the lower the value, the higher the priority. Default priority is 0. Apps with equal priorities will be applied in the order they were added in your state file (DSF).

	set : is used to override certain values from values.yaml with values from environment variables (or, starting from v1.3.0-rc, directly provided in the Desired State File). This is particularly useful for passing secrets to charts. If an environment variable with the same name as the provided value exists, the environment variable value will be used, otherwise, the provided value will be used as-is. The TOML stanza for this is [apps.<app_name>.set]

	setString : is used to override String values from values.yaml or chart’s defaults. This uses the --set-string flag in helm which is available only in helm >v2.9.0. This option is useful for image tags and the like. The TOML stanza for this is [apps.<app_name>.setString]

	setFile : is used to override values from values.yaml or chart’s defaults from provided file. This uses the --set-file flag in helm. This option is useful for embedding file contents in the values. The TOML stanza for this is [apps.<app_name>.setFile]

set, setString and setFile can’t take nested elements. If you need to provide nested values, you can combine them in one line with dots e.g. TOML: "image.tag"=some_value YAML: "image.tag": some_value

	helmFlags : array of helm upgrade flags, is used to pass flags to helm install/upgrade commands. These flags are not passed to helm diff. For setting values, use set, setString or setFile instead.

	helmDiffFlags : array of helm diff upgrade flags, is used to pass flags to helm diff upgrade commands. These flags are not passed to helm during upgrade. For setting values, use set, setString or setFile instead.

helmDiffFlags can be useful for example if you need to use the --disable-openapi-validation flag, in that case you would need to set it both in helmFlags and helmDiffFlags

	hooks : defines global lifecycle hooks to apply yaml manifest before and/or after different helmsman operations. Check here for more details. Unset hooks for a release are inherited from globalHooks in the settings stanza.

	maxHistory : defines the maximum number of helm revisions state (secrets/configmap) to keep. If unset, it will inherit the value of settings.globalMaxHistory, if that’s also unset, it defaults to 10.

	postRenderer : the path to an executable to be used for post rendering (requires Helm 3.1+ and helm-diff v3.1.2+)

Example:

Whitespace does not matter in TOML files. You could use whatever indentation style you prefer for readability.

[apps]

 [apps.jenkins]
 name = "jenkins"
 description = "jenkins"
 namespace = "staging"
 enabled = true
 group = "critical"
 chart = "jenkins/jenkins"
 version = "0.9.0"
 valuesFile = ""
 test = true
 maxHistory = 4
 protected = false
 wait = true
 priority = -3
 helmFlags = [
 "--recreate-pods",
]
 [apps.jenkins.set]
 secret1="$SECRET_ENV_VAR1"
 secret2="SECRET_ENV_VAR2" # works with/without $ at the beginning
 [apps.jenkins.setString]
 longInt = "1234567890"
 "image.tag" = "1.0.0"
 [apps.jenkins.hooks]
 successCondition= "Complete"
 successTimeout= "90s"
 deleteOnSuccess= true
 postInstall="job.yaml"
 preInstall="https://github.com/jetstack/cert-manager/releases/download/v0.14.0/cert-manager.crds.yaml"

apps:
 jenkins:
 name: "jenkins"
 description: "jenkins"
 namespace: "staging"
 enabled: true
 group: "critical"
 chart: "jenkins/jenkins"
 version: "0.9.0"
 valuesFile: ""
 test: true
 maxHistory: 4
 protected: false
 wait: true
 priority: -3
 helmFlags: [
 "--recreate-pods",
]
 set:
 secret1: "$SECRET_ENV_VAR1"
 secret2: "$SECRET_ENV_VAR2"
 setString:
 longInt: "1234567890"
 "image.tag": "1.0.0"
 hooks:
 successCondition: "Complete"
 successTimeout: "90s"
 deleteOnSuccess: true
 postInstall: "job.yaml"
 preInstall: "https://github.com/jetstack/cert-manager/releases/download/v0.14.0/cert-manager.crds.yaml"

version: v0.1.2

Why Helmsman?

This document describes the reasoning and need behind the inception of Helmsman.

Before Helm

Helmsman was created with continuous deployment in mind.
When we started using Kubernetes (k8s), we deployed applications on our cluster directly from k8s manifest files. Initially, we had a custom shell script added to our CI system to deploy the k8s resources on the cluster.

[image: _images/CI-pipeline-before-helm.jpg]CI-pipeline-before-helm

That script could only create the k8s resources from the manifest files. Soon we needed to have a more flexible way to dynamically create/delete those resources. We structured our git repo and used custom file names (adding enabled or disabled into file names) and updated the shell script accordingly. It did not take long before we realized that this does not scale and is difficult to maintain.

Helm to the rescue?

While looking for solutions for managing the growing number of k8s manifest files from a CI pipeline, we came to know about Helm and quickly realized its potential.
By creating Helm charts, we packaged related k8s manifests together into a single entity: “a chart”.

[image: _images/CI-pipeline-after-helm.jpg]CI-pipeline-after-helm

This reduced the amount of files the CI script has to deal with. However, all the CI shell script could do is package a chart and install/upgrade it in our k8s cluster whenever a new commit is done into the chart’s files in git.

But there were a few issues:

	Helm has more to it than package and install. Operations such as rollback, running chart tests, etc. are only doable from Helm’s CLI client.

	You have to keep updating your CI script every time you add a chart to k8s.

	What if you want to do the same on another cluster? you will have to replicate your CI pipeline and possibly change your CI script accordingly.

Helm chart development is split from the git repositories where they are used. This is simply to let us develop the charts independently from the projects where we used them and to allow us to reuse them in different projects.

With all this in mind, we needed a flexible and dynamic solution that can let us deploy and manage Helm charts into multiple k8s clusters independently and with minimum human intervention. Such a solution should be generic enough to be reusable for many different projects/cluster. And this is where Helmsman was born!

The Helmsman way

In English, a Helmsman [https://www.merriam-webster.com/dictionary/helmsman] is the person at the helm (on a ship). In k8s and Helm context, Helmsman holds the Helm and maintains your Helm charts’ lifecycle in your k8s cluster(s). Helmsman gets its directions to navigate from a declarative file maintained by the user (k8s admin).

Although knowledge about Helm and K8S is highly beneficial, such knowledge is NOT required to use Helmsman.

As the diagram below shows, we recommend having a Helmsman desired state file for each k8s cluster you are managing.

[image: _images/CI-pipeline-helmsman.jpg]CI-pipeline-helmsman

Along with that file, you would need to have any custom values yaml files [https://docs.helm.sh/chart_template_guide/#values-files] for the Helm charts you deploy on your k8s. Then you could configure your CI pipeline to use Helmsman docker images to process your desired state file whenever a commit is made to it.

Helmsman can also be used manually as a binary tool on a machine which has Helm and Kubectl installed.

How To Guides

This page contains a list of guides on how to use Helmsman.

It is recommended that you also check the DSF spec, cmd reference, and the best practice guide.

	Migrating from Helm 2 (Helmsman v1.x) to Helm 3 (Helmsman v3.x)

	Connecting to Kubernetes clusters

	Using an existing kube context

	Using the current kube context

	Connecting with certificates

	Connecting with bearer token

	Defining Namespaces

	Create namespaces

	Label namespaces

	Set resource limits for namespaces

	Protecting namespaces

	Namespace resource quotas

	Defining Helm repositories

	Using default helm repos

	Using private repos in Google GCS

	Using private repos in AWS S3

	Using private repos with basic auth

	Using pre-configured repos

	Using local charts

	Manipulating Apps

	Basic operations

	Passing secrets to releases

	Using environment variables in helmsman file and helm values files

	Apply K8S manifest before/after Helmsman operations

	Use multiple values files for apps

	Protect releases (apps)

	Moving releases (apps) across namespaces

	Override defined namespaces

	Run helm tests for deployed releases (apps)

	Define the order of apps operations

	Delete all releases (apps)

	Distinguish releases deployed from different DSF files using Helmsman’s contexts

	Migrating releases from Helmsman context to another

	Rename Helmsman’s contexts

	Speed up Helmsman execution by skipping context fetching

	Override context from cmd flags

	Running Helmsman in different environments

	Running Helmsman in CI

	Running Helmsman inside your k8s cluster

	Misc

	Authenticating to cloud storage providers

	Protecting namespaces and releases

	Send slack notifications from Helmsman

	Send MS Teams notifications from Helmsman

	Use multiple desired state files with Specification file (–spec flag)

	Merge multiple desired state files

	Limit Helmsman deployment to specific apps

	Limit Helmsman deployment to specific group of apps

	Exclude apps or groups from Helmsman deployment

	Use hiera-eyaml as secrets encryption backend

	Use DRY-ed code

version: v3.0.0-beta5

Basics

Install releases

You can run helmsman with the example.toml [https://github.com/Praqma/helmsman/blob/master/examples/example.toml] or example.yaml [https://github.com/Praqma/helmsman/blob/master/examples/example.yaml] file.

$ helmsman --apply -f example.toml
2017/11/19 18:17:57 Parsed [[example.toml]] successfully and found [2] apps.
2017/11/19 18:17:59 WARN: I could not create namespace [staging]. It already exists. I am skipping this.
2017/11/19 18:17:59 WARN: I could not create namespace [default]. It already exists. I am skipping this.
2017/11/19 18:18:02 INFO: Executing the following plan ...

Ok, I have generated a plan for you at: 2017-11-19 18:17:59.347859706 +0100 CET m=+2.255430021
DECISION: release [jenkins] is not present in the current k8s context. Will install it in namespace [[staging]]
DECISION: release [artifactory] is not present in the current k8s context. Will install it in namespace [[staging]]
2017/11/19 18:18:02 INFO: attempting: -- installing release [jenkins] in namespace [[staging]]
2017/11/19 18:18:05 INFO: attempting: -- installing release [artifactory] in namespace [[staging]]

$ helm list --namespace staging
NAME 	REVISION	UPDATED 	STATUS 	CHART 	NAMESPACE
artifactory	1 	Sun Nov 19 18:18:06 2017	DEPLOYED	artifactory-6.2.0	staging
jenkins 	1 	Sun Nov 19 18:18:03 2017	DEPLOYED	jenkins-0.9.1 	staging

Delete releases

You can then change your desire, for example to disable the Jenkins release that was created above by setting enabled = false :

Then run Helmsman again and it will detect that you want to delete Jenkins:

Note: As of v1.4.0-rc, deleting the jenkins app entry in the desired state file WILL result in deleting the jenkins release. To prevent this, use the --keep-untracked-releases flag with your Helmsman command.

$ helmsman --apply -f example.toml
2017/11/19 18:28:27 Parsed [[example.toml]] successfully and found [2] apps.
2017/11/19 18:28:29 WARN: I could not create namespace [staging]. It already exists. I am skipping this.
2017/11/19 18:28:29 WARN: I could not create namespace [default]. It already exists. I am skipping this.
2017/11/19 18:29:01 INFO: Executing the following plan ...

Ok, I have generated a plan for you at: 2017-11-19 18:28:29.437061909 +0100 CET m=+1.987623555
DECISION: release [jenkins] is desired to be deleted . Planning this for you!
DECISION: release [artifactory] is desired to be upgraded. Planning this for you!
2017/11/19 18:29:01 INFO: attempting: -- deleting release [jenkins]
2017/11/19 18:29:11 INFO: attempting: -- upgrading release [artifactory]

$ helm list --namespace staging
NAME 	REVISION	UPDATED 	STATUS 	CHART 	NAMESPACE
artifactory	2 	Sun Nov 19 18:29:11 2017	DEPLOYED	artifactory-6.2.0	staging

...
apps:
 jenkins:
 description: "jenkins"
 namespace: "staging"
 enabled: false # this tells helmsman to delete it
 chart: "jenkins/jenkins"
 version: "2.15.1"
 valuesFile: ""
 test: false

...

Rollback releases

Rollbacks in helm versions 2.8.2 and higher may not work due to a bug [https://github.com/helm/helm/issues/3722].
Similarly, if you change enabled back to true, it will figure out that you would like to roll it back.

$ helmsman --apply -f example.toml
2017/11/19 18:30:41 Parsed [[example.toml]] successfully and found [2] apps.
2017/11/19 18:30:42 WARN: I could not create namespace [staging]. It already exists. I am skipping this.
2017/11/19 18:30:43 WARN: I could not create namespace [default]. It already exists. I am skipping this.
2017/11/19 18:30:49 INFO: Executing the following plan ...

Ok, I have generated a plan for you at: 2017-11-19 18:30:43.108693039 +0100 CET m=+1.978435517
DECISION: release [jenkins] is currently deleted and is desired to be rolledback to namespace [[staging]] . No problem!
DECISION: release [artifactory] is desired to be upgraded. Planning this for you!
2017/11/19 18:30:49 INFO: attempting: -- rolling back release [jenkins]
2017/11/19 18:30:50 INFO: attempting: -- upgrading release [artifactory]

Upgrade releases

Every time you run Helmsman, (unless the release is protected or deployed in a protected namespace) it will check if upgrade is necessary (using the helm-diff plugin) and only upgrade if there are changes.

If you change the chart, the existing release will be deleted and a new one with the same name will be created using the new chart.

version: v3.0.0-beta5

Delete all deployed releases

Helmsman allows you to delete all the helm releases that were deployed by Helmsman from a given desired state.

The --destroy flag will remove all deployed releases from a given desired state file (DSF). Note that this does not currently delete the namespaces nor the Kubernetes contexts created.

This was originally requested in issue #88 [https://github.com/Praqma/helmsman/issues/88].

version: v3.4.0

Using Environment Variables in Helmsman DSF and Helm values files

You can use environment variables in any Helmsman desired state file or helm values files or lifecycle hooks files (K8S manifests). Both formats ${MY_VAR} and $MY_VAR are accepted.

To expand environment variables in helm values files and lifecycle hooks files, you have to enable the --subst-env-values.

How does it work?

Helmsman will expand those variables at run time. For helm values files and Helmsman lifecycle hooks files, the variables are expanded into temporary files which are used during runtime and removed at the end of execution.

Validating against unset env variables

By default, Helmsman will validate that your environment variables are set before using them. If they are unset, an error will be produced.
The validation will parse Helmsman DSF files and other files (values files, lifecycle hooks files) line-by-line. This maybe become slow if you have very large files.

Skipping env variables validation

Validation of environment variables being set is skipped in the following cases:

	If --skip-validation flag is used, no env variables validation is performed on any file.

	If --no-env-subst flag is used, no env variables validation is performed on Helmsman desired state files.

	If --subst-env-values flag is NOT used, no env variables validation is performed on helm values files and lifecycle hooks files.

Escaping the $ sign

In Helmsman desired state files

If you want to pass the $ as is, you can escape it like so: $$

In Helm values files and lifecycle hooks files

If you don’t enable --subst-env-values, the $ is passed as is without the need to escape it. However, if you enable --subst-env-values and want to pass the $ as is, you have to escape it like so $$

version: v3.0.0-beta5

Test charts

Helm allows running chart tests [https://github.com/helm/helm/blob/master/docs/chart_tests].

You can specify that you would like a chart to be tested whenever it is installed for the first time using the test key as follows:

...
[apps]

 [apps.jenkins]
 description = "jenkins"
 namespace = "staging"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1"
 valuesFile = ""
 test = true # setting this to true, means you want the charts tests to be run on this release when it is installed.

...

...
apps:

 jenkins:
 description: "jenkins"
 namespace: "staging"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1"
 valuesFile: ""
 test: true # setting this to true, means you want the charts tests to be run on this release when it is installed.

#...

version: v3.5.2

Helmsman Lifecycle hooks

With lifecycle hooks, you can declaratively define certain operations to perform before and/or after helmsman operations.
These operations can be running installing dependencies (e.g. CRDs), executing certain tests, sending custom notifications, etc.
Another useful use-case is if you are using a 3rd party chart which does not define native helm lifecycle hooks that you wish to have.

Prerequisites

	Hook operations can be defined in a Kubernetes manifest. They can be any kubernetes resource(s) (jobs, cron jobs, deployments, pods, etc).

	You can only define one manifest file for each lifecycle hook. So make sure all your needed resources are in this manifest.

	Hook operations can also be a script or a command.

	Script or manifest paths must be either absolute or relative to the DSF.

	Hook k8s manifests can also be defined as an URL.

Supported lifecycle stages

hook types are case sensitive. Also, note the camleCase.

	preInstall : before installing a release.

	postInstall: after installing a release.

	preUpgrade: before upgrading a release.

	postUpgrade: after upgrading a release.

	preDelete: before uninstalling a release.

	postDelete: after uninstalling a release.

Hooks stanza details

The following items can be defined in the hooks stanza:

pre/postInstall, pre/postUpgrade, pre/postDelete:

A valid path (URL, cloud bucket, local file path) to your hook’s k8s manifest or a valid path to a script or a shell command.

The following options only apply to kubernetes manifest type of hooks.

successCondition:

The Kubernetes status condition that indicates that your resources have finished their job successfully. You can find out what the status conditions are for different k8s resources with a kubectl command similar to: kubectl get job -o=jsonpath='{range .items[*]}{.status.conditions[0].type}{"\n"}{end}'

	For jobs, it is Complete

	For pods, it is Initialized

	For deployments, it is Available

successTimeout: (default 30s)

How much time to wait for the successCondition

deleteOnSuccess: (true/false)

Indicates if you wish to delete the hook’s manifest after the hook succeeds. This is only used if you define successCondition

Note: successCondition, deleteOnSuccess and successTimeout are ignored when the --dry-run flag is used.

Global vs App-specific hooks

You can define two types of hooks in your desired state file:

Global hooks:

Are defined in the settings stanza and are inherited by all releases in the DSF if they haven’t defined their own.

These are defined as follows:

[settings]
 #...
 [settings.globalHooks]
 successCondition= "Initialized"
 deleteOnSuccess= true
 postInstall= "job.yaml"

settings:
 #...
 globalHooks:
 successCondition: "Initialized"
 deleteOnSuccess: true
 postInstall: "job.yaml"
 #...

App-specific hooks:

Each app (release) can define its own hooks which override any global ones.

These are defined as follows:

[apps]
 [apps.argo]
 namespace = "production" # maps to the namespace as defined in namespaces above
 enabled = true # change to false if you want to delete this app release [default = false]
 chart = "argo/argo" # changing the chart name means delete and recreate this release
 version = "0.6.4" # chart version
 [apps.argo.hooks]
 successCondition= "Complete"
 successTimeout= "90s"
 deleteOnSuccess= true
 preInstall="job.yaml"
 preInstall="https://github.com/jetstack/cert-manager/releases/download/v0.14.0/cert-manager.crds.yaml"
 postInstall="https://raw.githubusercontent.com/jetstack/cert-manager/release-0.14/deploy/manifests/00-crds.yaml"
 preUpgrade="job.yaml"
 postUpgrade="job.yaml"
 preDelete="job.yaml"
 postDelete="job.yaml"

apps:
 argo:
 namespace: "staging" # maps to the namespace as defined in namespaces above
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "argo/argo" # changing the chart name means delete and recreate this chart
 version: "0.6.5" # chart version
 hooks:
 successCondition: "Complete"
 successTimeout: "90s"
 deleteOnSuccess: true
 preInstall: "job.yaml"
 preInstall: "https://github.com/jetstack/cert-manager/releases/download/v0.14.0/cert-manager.crds.yaml"
 postInstall: "https://raw.githubusercontent.com/jetstack/cert-manager/release-0.14/deploy/manifests/00-crds.yaml"
 postInstall: "job.yaml"
 preUpgrade: "job.yaml"
 postUpgrade: "job.yaml"
 preDelete: "job.yaml"
 postDelete: "job.yaml"

Enforcing hook manifests deletion on all apps

You can do that by setting deleteOnSuccess to true in the globalHooks stanza under settings. If you need to make an exception for some app, you can set it to false in the hooks stanza of this app. This overrides the global hooks.

Expanding variables in hook manifests

You can expand variables/parameters in the hook manifests at run time in one of the following ways:

	use env variables (defined as $MY_VAR in your manifests) and run helmsman with --subst-env-values. Environment variables can be read from the environment or you can load them from an env file [https://github.com/Praqma/helmsman/blob/master/docs/how_to/apps/secrets.md#passing-secrets-from-env-files]

	use AWS SSM parameters [https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html] (defined as {{ssm: MY_PARAM }} in your manifests) and run helmsman with --subst-ssm-values.

	Pass encrypted values with hiera-eyaml [https://github.com/Praqma/helmsman/blob/master/docs/how_to/settings/use-hiera-eyaml-as-secrets-encryption]

Limitations

	You can only have one manifest file per lifecycle.

	If you have multiple k8s resources in your hook manifest file, successCondition may not work.

	pre/postDelete hooks are not respected before/after deleting untracked releases (releases which are no longer defined in your desired state file).

version: v3.2.0

Migrating releases from Helmsman context to another

The context stanza has been introduced in v3.0.0 to allow you to distinguish releases managed by different Helmsman’s files. However, once a context is defined, it couldn’t be modified.

From v.3.2.0, you can migrate releases in a DSF to another context (or rename the context) using the --migrate-context. This option can be combined with any other Helmsman flags. Behind the scenes, it will just update the Helmsman labels that contain the context name on the release secrets/configmaps before proceeding with the regular execution.

Remember

	It is safe to run the --migrate-context flag multiple times.

	It can be used in conjunction with other cmd flags.

	It will respect --target & --group flags if specified (i.e. context migration will only be applied to the selected releases).

	The flag introduces an extra operation done before any other operations are done. So to reduce execution time, don’t use it when it’s not needed.

version: v3.0.0-beta5

Move charts across namespaces

If you have a workflow for testing a release first in the staging namespace then move it to the production namespace, Helmsman can help you.

NOTE: If your chart uses a persistent volume, then you have to read the note on PVs below first.

#...
[namespaces]
[namespaces.staging]
[namespaces.production]

[apps]
 [apps.jenkins]
 description = "jenkins"
 namespace = "staging" # this is where it is deployed
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1"
 valuesFile = ""
 test = true

#...

...
namespaces:
 staging:
 production:

apps:
 jenkins:
 description: "jenkins"
 namespace: "staging" # this is where it is deployed
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1"
 valuesFile: ""
 test: true

...

Then if you change the namespace key for jenkins:

#...
[namespaces]
[namespaces.staging]
[namespaces.production]

[apps]
 [apps.jenkins]
 description = "jenkins"
 namespace = "production" # we want to move it to production
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1"
 valuesFile = ""
 test = true

#...

...
namespaces:
 staging:
 production:

apps:
 jenkins:
 description: "jenkins"
 namespace: "production" # we want to move it to production
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1"
 valuesFile: ""
 test: true

...

Helmsman will delete the jenkins release from the staging namespace and install it in the production namespace (default in the above setup).

Note on Persistent Volumes

Helmsman does not automatically move PVCs across namespaces. You have to follow the steps below to retain your data when moving an app to a different namespace.

Persistent Volumes (PV) are accessed through Persistent Volume Claims (PVC). But PVCs are namespaced objects which means moving an application from one namespace to another will result in a new PVC created in the new namespace. The old PV -which possibly contains your application data- will still be mounted to the old PVC (the one in the old namespace) even if you have deleted your application helm release.

Now, the newly created PVC (in the new namespace) will not be able to mount to the old PV and instead it will mount to any other available one or (in the case of dynamic provisioning) will provision a new PV. This means the application in the new namespace does not have the old data. Don’t panic, the old PV is still there and contains your old data.

Mounting the old PV to the new PVC (in the new namespace)

	You have to make sure the Reclaim Policy of the old PV is set to Retain. In dynamic provisioned PVs, the default is Delete.
To change it:

kubectl patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

	Once your old helm release is deleted, the old PVC and PV are still there. Go ahead and delete the PVC

kubectl delete pvc <your-pvc-name> --namespace <the-old-namespace>

Since, we changed the Reclaim Policy to Retain, the PV will stay around (with all your data).

	The PV is now in the Released state but not yet available for mounting.

kubectl get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE
...
pvc-f791ef92-01ab-11e8-8a7e-02412acf5adc 20Gi RWO Retain Released staging/myapp-persistent-storage-test-old-0 gp2 5m

Now, you need to make it Available, for that we need to remove the PV.Spec.ClaimRef from the PV spec:

kubectl edit pv <pv-name>
edit the file and save it

Now, the PV should become in the Available state:

kubectl get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE
...
pvc-f791ef92-01ab-11e8-8a7e-02412acf5adc 20Gi RWO Retain Available gp2 7m

	Delete the new PVC (and its mounted PV if necessary), then delete your application pod(s) in the new namespace. Assuming you have a deployment/replication controller in place, the pod will be recreated in the new namespace and this time will mount to the old volume and your data will be once again available to your application.

NOTE: if there are multiple PVs in the Available state and they match capacity and read access for your application, then your application (in the new namespace) might mount to any of them. In this case, either ensure only the right PV is in the available state or make the PV available to a specific PVC - pre-fill PV.Spec.ClaimRef with a pointer to a PVC. Leave the PV.Spec.ClaimRef,UID empty, as the PVC does not need to exist at this point and you don’t know PVC’s UID. This PV can be bound only to the specified PVC

Further details:

	https://github.com/kubernetes/kubernetes/issues/48609

	https://kubernetes.io/docs/tasks/administer-cluster/change-pv-reclaim-policy/

version: v3.3.0-beta1

Multiple value files

You can include multiple yaml value files to separate configuration for different environments.

file paths can be a URL (e.g. to a public git repo) , cloud bucket, local absolute/relative file path.

...
[apps]

 [apps.jenkins-prod]
 description = "production jenkins"
 namespace = "production"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1" # chart version
 valuesFiles = [
 "../my-jenkins-common-values.yaml",
 "../my-jenkins-production-values.yaml"
]

 # the jenkins release below is being tested in the staging namespace
 [apps.jenkins-test]
 description = "test release of jenkins, testing xyz feature"
 namespace = "staging"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1" # chart version
 valuesFiles = [
 "../my-jenkins-common-values.yaml",
 "../my-jenkins-testing-values.yaml"
]

#...

...
apps:

 jenkins-prod:
 description: "production jenkins"
 namespace: "production"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1" # chart version
 valuesFiles:
 - "../my-jenkins-common-values.yaml"
 - "../my-jenkins-production-values.yaml"

 # the jenkins release below is being tested in the staging namespace
 jenkins-test:
 name: "jenkins-test" # should be unique across all apps
 description: "test release of jenkins, testing xyz feature"
 namespace: "staging"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1" # chart version
 valuesFiles:
 - "../my-jenkins-common-values.yaml"
 - "../my-jenkins-testing-values.yaml"
...

version: v3.0.0-beta5

Using the priority key for Apps

The priority flag in Apps definition allows you to define the order at which apps operations will be applied. This is useful if you have dependencies between your apps/services.

Priority is an optional flag and has a default value of 0 (zero). If set, it can only use a negative value. The lower the value, the higher the priority.

If you want your apps to be deleted in the reverse order as they where created, you can also use the optional Settings flag reverseDelete, to achieve this, set it to true

Example

[metadata]
 org = "example.com"
 description = "example Desired State File for demo purposes."

[settings]
 kubeContext = "minikube"
 reverseDelete = false # Optional flag to reverse the priorities when deleting

[namespaces]
 [namespaces.staging]
 protected = false
 [namespaces.production]
 protected = true

[helmRepos]
jenkins = https://charts.jenkins.io
center = https://repo.chartcenter.io

[apps]
 [apps.jenkins]
 description = "jenkins"
 namespace = "staging" # maps to the namespace as defined in environments above
 enabled = true # change to false if you want to delete this app release [empty = false]
 chart = "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version = "2.15.1" # chart version
 valuesFile = "" # leaving it empty uses the default chart values
 priority= -2

 [apps.jenkins1]
 description = "jenkins"
 namespace = "staging" # maps to the namespace as defined in environments above
 enabled = true # change to false if you want to delete this app release [empty = false]
 chart = "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version = "2.15.1" # chart version
 valuesFile = "" # leaving it empty uses the default chart values

 [apps.jenkins2]
 description = "jenkins"
 namespace = "production" # maps to the namespace as defined in environments above
 enabled = true # change to false if you want to delete this app release [empty = false]
 chart = "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version = "2.15.1" # chart version
 valuesFile = "" # leaving it empty uses the default chart values
 priority= -3

 [apps.artifactory]
 description = "artifactory"
 namespace = "staging" # maps to the namespace as defined in environments above
 enabled = true # change to false if you want to delete this app release [empty = false]
 chart = "jfrog/artifactory" # changing the chart name means delete and recreate this chart
 version = "11.4.2" # chart version
 valuesFile = "" # leaving it empty uses the default chart values
 priority= -2

The above example will generate the following plan:

DECISION: release [jenkins2] is not present in the current k8s context. Will install it in namespace [[production]] -- priority: -3
DECISION: release [jenkins] is not present in the current k8s context. Will install it in namespace [[staging]] -- priority: -2
DECISION: release [artifactory] is not present in the current k8s context. Will install it in namespace [[staging]] -- priority: -2
DECISION: release [jenkins1] is not present in the current k8s context. Will install it in namespace [[staging]] -- priority: 0

version: v3.2.0

Override Helmsman context name from CMD flags using --context-override

There are two main use cases for this flag:

	To speed up Helmsman’s execution when you have too many release (see issue #418 [https://github.com/Praqma/helmsman/issues/418])
This flag works by skipping the search for the context information which Helmsman adds in the form of labels to the helm release state (secrets/configmaps).

Use this option with caution. You must be sure that this won’t cause conflicts.

	[Not recommended] If ,for whatever reason, you want to temporarily override the context defined on the release state (in labels on secrets/configmaps) with something. Use --migrate-context instead to permanently rename your context

version: v3.0.0-beta5

Override defined namespaces from command line

If you use different release branches for your releasing/managing your applications in your k8s clusters, then you might want to use the same desired state but with different namespaces on each branch. Instead of duplicating the DSF in multiple branches and adjusting it, you can use the --ns-override command line flag when running helmsman.

This flag overrides all namespaces defined in your DSF with the single one you pass from command line.

Example

dsf.toml:

[metadata]
org = "example.com"
description = "example Desired State File for demo purposes."

[settings]
kubeContext = "minikube"

[namespaces]
 [namespaces.staging]
 protected = false
 [namespaces.production]
 prtoected = true

[helmRepos]
jenkins = https://charts.jenkins.io
center = https://repo.chartcenter.io

[apps]

 [apps.jenkins]
 description = "jenkins"
 namespace = "production" # maps to the namespace as defined in environments above
 enabled = true # change to false if you want to delete this app release [empty = false]
 chart = "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version = "2.15.1" # chart version
 valuesFile = "" # leaving it empty uses the default chart values

 [apps.artifactory]
 description = "artifactory"
 namespace = "staging" # maps to the namespace as defined in environments above
 enabled = true # change to false if you want to delete this app release [empty = false]
 chart = "jfrog/artifactory" # changing the chart name means delete and recreate this chart
 version = "11.4.2" # chart version
 valuesFile = "" # leaving it empty uses the default chart values

dsf.yaml:

metadata:
 org: "example.com"
 description: "example Desired State File for demo purposes."

settings:
 kubeContext: "minikube"

namespaces:
 staging:
 protected: false
 production:
 protected: true

helmRepos:
 jenkins: https://charts.jenkins.io
 jfrog: https://charts.jfrog.io

apps:

 jenkins:
 description: "jenkins"
 namespace: "production" # maps to the namespace as defined in environments above
 enabled: true # change to false if you want to delete this app release [empty: false]
 chart: "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version: "2.15.1" # chart version
 valuesFile: "" # leaving it empty uses the default chart values

 artifactory:
 description: "artifactory"
 namespace: "staging" # maps to the namespace as defined in environments above
 enabled: true # change to false if you want to delete this app release [empty: false]
 chart: "jfrog/artifactory" # changing the chart name means delete and recreate this chart
 version: "11.4.2" # chart version
 valuesFile: "" # leaving it empty uses the default chart values

In command line, we run :

helmsman -f dsf.toml --debug --ns-override testing

This will override the staging and production namespaces defined in dsf.toml :

2018/03/31 17:38:12 INFO: Plan generated at: Sat Mar 31 2018 17:37:57
DECISION: release [jenkins] is not present in the current k8s context. Will install it in namespace [[testing]] -- priority: 0
DECISION: release [artifactory] is not present in the current k8s context. Will install it in namespace [[testing]] -- priority: 0

version: v1.8.0

Protecting apps (releases)

You can define apps to be protected using the protected field. Please check this doc for details about what protection means and the difference between namespace-level and release-level protection.

Here is an example of a protected app:

[apps]

 [apps.jenkins]
 namespace = "staging"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1"
 protected = true # defining this release to be protected.

apps:

 jenkins:
 namespace: "staging"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1"
 protected: true # defining this release to be protected.

version: v3.0.0-beta5

Secrets

Passing secrets from env variables

Starting from v0.1.3, Helmsman allows you to pass secrets and other user input to helm charts from environment variables as follows:

...
[apps]

 [apps.jira]
 description = "jira"
 namespace = "staging"
 enabled = true
 chart = "myrepo/jira"
 version = "0.1.5"
 valuesFile = "applications/jira-values.yaml"
 test = true
 [apps.jira.set] # the format is [apps.<<release_name (as defined above)>>.set]
 db_username= "$JIRA_DB_USERNAME" # pass any number of key/value pairs where the key is the input expected by the helm charts and the value is an env variable name starting with $
 db_password= "$JIRA_DB_PASSWORD"
...

...
apps:

 jira:
 description: "jira"
 namespace: "staging"
 enabled: true
 chart: "myrepo/jira"
 version: "0.1.5"
 valuesFile: "applications/jira-values.yaml"
 test: true
 set:
 db_username: "$JIRA_DB_USERNAME" # pass any number of key/value pairs where the key is the input expected by the helm charts and the value is an env variable name starting with $
 db_password: "$JIRA_DB_PASSWORD"
...

These input variables will be passed to the chart when it is deployed/upgraded using helm’s --set <<var_name>>=<<var_value_read_from_env_var>>

Passing secrets from env files

You can also keep these environment variables in files, by default Helmsman will load variables from a .env file but you can also specify files by using the -e option:

helmsman -e myVars

Below are some examples of valid env files

I am a comment and that is OK
SOME_VAR=someval
FOO=BAR # comments at line end are OK too
export BAR=BAZ

Or you can do YAML(ish) style

FOO: bar
BAR: baz

Passing secrets using helm secrets plugin

You can also use the helm secrets plugin [https://github.com/jkroepke/helm-secrets] to pass your secrets.

Passing secrets using hiera eyaml

An alternative method is to use heira eyaml as described in this guide.

version: v3.0.0-beta5

Run Helmsman in CI

You can run Helmsman as a job in your CI system using the helmsman docker image [https://hub.docker.com/r/praqma/helmsman/].
The following example is a config.yml file for CircleCI but can be replicated for other CI systems.

version: 2
jobs:

 deploy-apps:
 docker:
 - image: praqma/helmsman:v3.0.0-beta5
 steps:
 - checkout
 - run:
 name: Deploy Helm Packages using helmsman
 command: helmsman --apply -f helmsman-deployments.toml

workflows:
 version: 2
 build:
 jobs:
 - deploy-apps

IMPORTANT: If your CI build logs are publicly readable, don’t use the --verbose together with --debug flags as logs any secrets being passed from env vars to the helm charts.

The helmsman-deployments.toml is your desired state file which will version controlled in your git repo.

version: v1.8.0

Running Helmsman inside your k8s cluster

Helmsman can be deployed inside your k8s cluster and can talk to the k8s API using a bearer token.

See connecting to your cluster with bearer token for more details.

Your desired state will look like:

[settings]
 kubeContext = "test" # the name of the context to be created
 bearerToken = true
 clusterURI = "https://kubernetes.default"

settings:
 kubeContext: "test" # the name of the context to be created
 bearerToken: true
 clusterURI: "https://kubernetes.default"

To deploy Helmsman into a k8s cluster, few steps are needed:

The steps below assume default namespace

	Create a k8s service account

kubectl create sa helmsman

	Create a clusterrolebinding

kubectl create clusterrolebinding helmsman-cluster-admin --clusterrole=cluster-admin --serviceaccount=default:helmsman

	Deploy helmsman

This command gives an interactive session:

kubectl run helmsman --restart Never --image praqma/helmsman --serviceaccount=helmsman -- helmsman -f -- sleep 3600

But you can also create a proper kubernetes deployment and mount a volume to it containing your desired state file(s).

Defining Helm Repositories

Following list contains guides on how to define helm repositories

	Using default helm repos

	Using private repos in Google GCS

	Using private repos in AWS S3

	Using private repos with basic auth

	Using pre-configured repos

	Using local charts

	Using OCI registries

version: v1.8.0

Using private helm repos with basic auth

Helmsman allows you to use any private helm repo hosting which supports basic auth (e.g. Artifactory).

For such repos, you need to add the basic auth information in the repo URL as in the example below:

Be aware that some special characters in the username or password can make the URL invalid.

[helmRepos]
PASS is an env var containing the password
myPrivateRepo = "https://user:$PASS@myprivaterepo.org"

helmRepos:
 # PASS is an env var containing the password
 myPrivateRepo: "https://user:$PASS@myprivaterepo.org"

version: v3.0.0-beta5

Default helm repos

Helm v3 no longer adds the stable and incubator repos by default. Up to Helmsman v3.0.0-beta5, Helmsman adds these two repos by default. And you can disable the automatic addition of these two repos, use the --no-default-repos flag.

Starting from v3.0.0-beta6, Helmsman complies with the Helm v3 behavior and DOES NOT add stable nor incubator by default. The --no-default-repos is also deprecated.

This example would have only the custom repo defined explicitly:

[helmRepos]
 custom = "https://mycustomrepo.org"

helmRepos:
 custom: "https://mycustomrepo.org"

This example would have stable defined with a custom repo:

#...
[helmRepos]
stable = "https://mycustomstablerepo.com"
#...

...
helmRepos:
 stable: "https://mycustomstablerepo.com"
...

This example would have stable defined with a Google deprecated stable repo:

#...
[helmRepos]
stable = "https://kubernetes-charts.storage.googleapis.com"
#...

...
helmRepos:
 stable: "https://kubernetes-charts.storage.googleapis.com"
...

version: v1.8.0

Using private helm repos in GCS

Helmsman allows you to use private charts from private repos. Currently only repos hosted in S3 or GCS buckets are supported for private repos.

You need to provide one of the following env variables:

	GOOGLE_APPLICATION_CREDENTIALS environment variable to contain the absolute path to your Google cloud credentials.json file.

	Or, GCLOUD_CREDENTIALS environment variable to contain the content of the credentials.json file.

If running inside GCP helmsman can use metadata server to use Service Account permissions.

Helmsman uses the helm GCS [https://github.com/nouney/helm-gcs] plugin to work with GCS helm repos.

[helmRepos]
 gcsRepo = "gs://myrepobucket/charts"

helmRepos:
 gcsRepo: "gs://myrepobucket/charts"

version: v1.3.0-rc

Use local helm charts

You can use your locally developed charts.

From file system

If you use a file path (relative to the DSF, or absolute) for the chart attribute
helmsman will try to resolve that chart from the local file system. The chart on the
local file system must have a version matching the version specified in the DSF.

version: v3.7.1

Using OCI registries for helm charts

Helmsman allows you to use charts stored in OCI registries.

You need to export the following env variables:

	HELM_EXPERIMENTAL_OCI=1

if the registry requires authentication, you must login before running Helmsman

helm registry login -u myuser my-registry.local

[apps]
 [apps.my-app]
 chart = "oci://my-registry.local/my-chart"
 version = "1.0.0"

#...
apps:
 my-app:
 chart: oci://my-registry.local/my-chart
 version: 1.0.0

For more information, read the helm registries documentation [https://helm.sh/docs/topics/registries/].

version: v1.8.0

Using pre-configured helm repos

The primary use-case is if you have some helm repositories that require HTTP basic authentication and you don’t want to store the password in the desired state file or as an environment variable. In this case you can execute the following sequence to have those repositories configured:

Set up the helmsman configuration:

preconfiguredHelmRepos = ["myrepo1", "myrepo2"]

preconfiguredHelmRepos:
 - myrepo1
 - myrepo2

In this case you will manually need to execute helm repo add myrepo1 <URL> --username= --password=

version: v1.8.0

Using private helm repos in S3

Helmsman allows you to use private charts from private repos. Currently only repos hosted in S3 or GCS buckets are supported for private repos.

You need to provide one of the following env variables:

	AWS_ACCESS_KEY_ID

	AWS_SECRET_ACCESS_KEY

	AWS_DEFAULT_REGION

Helmsman uses the helm s3 [https://github.com/hypnoglow/helm-s3] plugin to work with S3 helm repos.

[helmRepos]
myPrivateRepo = "s3://this-is-a-private-repo/charts"

helmRepos:
 myPrivateRepo: "s3://this-is-a-private-repo/charts"

version: v1.8.0

Authenticating to cloud storage providers

Helmsman can read files like certificates for connecting to the cluster or TLS certificates for communicating with Tiller from some cloud storage providers; namely: GCS, S3 and Azure blob storage. Below is the authentication requirement for each provider:

AWS S3

You need to provide ALL the following AWS env variables:

	AWS_ACCESS_KEY_ID

	AWS_SECRET_ACCESS_KEY

	AWS_DEFAULT_REGION

Google GCS

You need to provide ONE of the following env variables:

	GOOGLE_APPLICATION_CREDENTIALS the absolute path to your Google cloud credentials.json file.

	Or, GCLOUD_CREDENTIALS the content of the credentials.json file.

If running inside GCP helmsman can use metadata server to use Service Account permissions.

Microsoft Azure

You need to provide ALL of the following env variables:

	AZURE_STORAGE_ACCOUNT

	AZURE_STORAGE_ACCESS_KEY

version: v3.10.0

Exclude specific apps or groups from execution

Starting from v3.10.0, Helmsman allows you to pass the --exclude-target or --exclude-group flag multiple times
to specify which apps or groups should be excluded from execution.
Thanks to this one can exclude specific applications among all defined for an environment.

Example

Having environment defined with such apps:

example.yaml:

...
apps:
 jenkins:
 namespace: "staging" # maps to the namespace as defined in namespaces above
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version: "2.15.1" # chart version

 artifactory:
 namespace: "production" # maps to the namespace as defined in namespaces above
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "jfrog/artifactory" # changing the chart name means delete and recreate this chart
 version: "11.4.2" # chart version
...

running Helmsman with -f example.yaml would result in checking state and invoking deployment for both jenkins and artifactory application.

With --exclude-target flag in command like

helmsman -f example.yaml --exclude-target artifactory ...

one can execute Helmsman’s environment defined with example.yaml limited to only one jenkins app by excluding second one - artifactory from the execution.

Multiple applications can be excluded with --exclude-target, like

helmsman -f example.yaml --exclude-target artifactory --exclude-target jenkins ...

Same rules apply for --exclude-groups.

version: v1.9.0

Limit execution to explicitly defined apps

Starting from v1.9.0, Helmsman allows you to pass the --target flag multiple times to specify multiple apps
that limits apps considered by Helmsman during this specific execution.
Thanks to this one can deploy specific applications among all defined for an environment.

Example

Having environment defined with such apps:

example.yaml:

...
apps:
 jenkins:
 namespace: "staging" # maps to the namespace as defined in namespaces above
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version: "2.15.1" # chart version

 artifactory:
 namespace: "production" # maps to the namespace as defined in namespaces above
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "jfrog/artifactory" # changing the chart name means delete and recreate this chart
 version: "11.4.2" # chart version
...

running Helmsman with -f example.yaml would result in checking state and invoking deployment for both jenkins and artifactory application.

With --target flag in command like

helmsman -f example.yaml --target artifactory ...

one can execute Helmsman’s environment defined with example.yaml limited to only one artifactory app. Others are ignored until the flag is defined.

Multiple applications can be set with --target, like

helmsman -f example.yaml --target artifactory --target jenkins ...

version: v1.13.0

Limit execution to explicitly defined group of apps

Starting from v1.13.0, Helmsman allows you to pass the --group flag to specify group of apps
the execution of Helmsman deployment will be limited to.
Thanks to this one can deploy specific applications among all defined for an environment.

Example

Having environment defined with such apps:

example.yaml:

...
apps:
 jenkins:
 namespace: "staging" # maps to the namespace as defined in namespaces above
 group: "critical" # group name
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "jenkins/jenkins" # changing the chart name means delete and recreate this chart
 version: "2.15.1" # chart version

 artifactory:
 namespace: "production" # maps to the namespace as defined in namespaces above
 group: "sidecar" # group name
 enabled: true # change to false if you want to delete this app release empty: false:
 chart: "jfrog/artifactory" # changing the chart name means delete and recreate this chart
 version: "11.4.2" # chart version
...

running Helmsman with -f example.yaml would result in checking state and invoking deployment for both jenkins and artifactory application.

With --group flag in command like

helmsman -f example.yaml --group critical ...

one can execute Helmsman’s environment defined with example.yaml limited to only one jenkins app, since its group is critical.
Others are ignored until the flag is defined.

Multiple applications can be set with --group, like

helmsman -f example.yaml --group critical --group sidecar ...

version: v3.0.0-beta5

Supply multiple desired state files

Starting from v1.5.0, Helmsman allows you to pass the -f flag multiple times to specify multiple desired state files
that should be merged. This allows us to do things like specify our non-environment-specific config in a common.toml file
and environment specific info in a nonprod.toml or prod.toml file. This process uses this library [https://github.com/imdario/mergo]
to do the merging, and is subject to the limitations described there.

For example:

common.toml:

[metadata]
org = "Organization Name"
maintainer = "project-owners@example.com"
description = "Project charts"

[settings]
serviceAccount = "tiller"
storageBackend = "secret"
...

nonprod.toml:

[settings]
kubeContext = "cluster-nonprod"

[apps]
 [apps.external-dns]
 valuesFiles = ["./external-dns/values.yaml", "./external-dns/nonprod.yaml"]

 [apps.cert-issuer]
 valuesFile = "./cert-issuer/nonprod.yaml"
...

One can then run the following to use the merged config of the above files, with later files override values of earlier ones:

helmsman -f common.toml -f nonprod.toml ...

Distinguishing releases deployed from different Desired State Files

When using multiple DSFs -and since Helmsman doesn’t maintain any external state-, it has been possible for operations from one DSF to cause problems to releases deployed by other DSFs. A typical example is that releases deployed by other DSFs are considered untracked and get scheduled for deleting. Workarounds existed (e.g. using the --keep-untracked-releases, --target and --group flags).

Starting from Helmsman v3.0.0-beta5, context is introduced to define the context in which a DSF is used. This context is used as the ID of that specific DSF and must be unique across the used DSFs. The context is then used to label the different releases to link them to the DSF they were first deployed from. These labels are then checked by Helmsman on each run to make sure operations are limited to releases from a specific context.

Here is how it is used:

infra.yaml:

context: infra-apps
settings:
 kubeContext: "cluster"
 storageBackend: "secret"

namespaces:
 infra:
 protected: true

apps:
 external-dns:
 namespace: infra
 valuesFile: "./external-dns/values.yaml"
 ...

 cert-issuer:
 namespace: infra
 valuesFile: "./cert-issuer/nonprod.yaml"
 ...
...

prod.yaml:

context: prod-apps
settings:
 kubeContext: "cluster"
 storageBackend: "secret"

namespaces:
 prod:
 protected: true

apps:
 my-prod-app:
 namespace: prod
 valuesFile: "./my-prod-app/values.yaml"
 ...
...

If you need to migrate releases from one Helmsman’s context to another, check this guide.

Limitations

	If no context is provided in DSF (or merged DSFs), default is applied as a default context. This means any set of DSFs that don’t define custom contexts can still operate on each other’s releases (same behavior as in Helmsman 1.x).

	When merging multiple DSFs, context from the firs DSF in the list gets overridden by the context in the last DSF.

	If multiple DSFs use the same context name, they will mess up each other’s releases. You can use --keep-untracked-releases to avoid that. However, it is recommended to avoid having multiple DSFs using the same context name.

version: v3.2.0

Migrate from Helm2 (Helmsman v1.x) to Helm3 (Helmsman v3.x)

This guide describes the process of migrating your Helmsman managed releases from Helm v2 to v3.
Helmsman v3.x is Helm v3-compatible, while Helmsman v1.x is Helm v2-compatible.

The migration process can go as follows:

Migrate Helm v2 release state to Helm v3

	Go through the Helm’s v2 to v3 migration guide [https://helm.sh/docs/topics/v2_v3_migration/]

	Manually migrate your releases state/history with the helm3 2to3 plugin [https://helm.sh/blog/migrate-from-helm-v2-to-helm-v3/] (e.g. usage helm3 2to3 convert).

 version: v3.8.1

version: v3.8.1

Specification file

Starting from v3.8.0, Helmsman allows you to use Specification file passed with --spec <file> flag
in order to define multiple Desired State Files to be merged in particular order and with specific priorities.

An example Specification file spec.yaml:

stateFiles:
 - path: examples/example.yaml
 - path: examples/minimal-example.yaml
 priority: -10
 - path: examples/minimal-example.toml
 priority: -20

This file can be then run with:

helmsman --spec spec.yaml ...

What it does is it takes the files from stateFiles list and orders them based on their priorities same way it does with the apps in DSF file.
In an example above the result order would be:

 - path: examples/minimal-example.toml
 - path: examples/minimal-example.yaml
 - path: examples/example.yaml

with priorities being -20, -10, 0 after ordering.

Once ordering is done, Helmsman will read each file one by one and merge the previous states with the current file it goes through.

One can take advantage of that and define the state of the environment starting with more general definitions and then reaching more specific cases in the end,
which would overwrite or extend things from previous files.

 version: v1.3.0-rc

version: v1.3.0-rc

Namespace and Release Protection

Since helmsman is used with version controlled code and is often configured to be triggered as part of a CI pipeline, accidental mistakes could happen by the user (e.g, disabling a production application and taking out of service as a result of a mistaken change in the desired state file).

As of version v1.0.0, helmsman provides a fine-grained mechanism to protect releases/namespaces from accidental desired state file changes.

Protection definition

	When a release (application) is protected, it CANNOT:

	deleted

	upgraded

	moved to another namespace

	A release CAN be moved into protection from a non-protected state.

	If a protected release need to be updated/changed or even deleted, this is possible, but the protection has to be removed first (i.e. remove the namespace/release from the protected state). This explained further below.

A release is an instance (installation) of an application which has been packaged as a helm chart.

Protection mechanism

Protection is supported in two forms:

	Namespace-level Protection: is defined at the namespace level. A namespace can be declaratively defined to be protected in the desired state file as in the example below:

[namespaces]
 [namespaces.staging]
 protected = false
 [namespaces.production]
 protected = true

	Release-level Protection is defined at the release level as in the example below:

[apps]

 [apps.jenkins]
 namespace = "staging"
 enabled = true
 chart = "jenkins/jenkins"
 version = "2.15.1"
 protected = true # defining this release to be protected.

apps:

 jenkins:
 namespace: "staging"
 enabled: true
 chart: "jenkins/jenkins"
 version: "2.15.1"
 protected: true # defining this release to be protected.

All releases in a protected namespace are automatically protected. Namespace protection has higher priority than the release-level protection.

Important Notes

	You can combine both types of protection in your desired state file. The namespace-level protection always has a higher priority.

	Removing the protection from a namespace means all releases deployed in that namespace are no longer protected.

	We recommend using namespace-level protection for production namespace(s) and release-level protection for releases deployed in other namespaces.

	Release/namespace protection is only applied on single desired state files. It is your responsibility to make sure that multiple desired state files (if used) do not conflict with each other (e.g, one defines a particular namespace as protected and another defines it unprotected.) If you use multiple desired state files with the same cluster, please refer to deployment strategies and best practice documentation.

 Microsoft Teams notifications from Helmsman

Microsoft Teams notifications from Helmsman

Helmsman can send MS Teams notifications to a channel of your choice. To enable the notifications, simply add a msTeamsWebhook webhook in the settings section of your desired state file. The webhook URL can be passed directly or from an environment variable.

[settings]
...
msTeamsWebhook = $MY_MS_TEAMS_WEBHOOK

settings:
 # ...
 msTeamsWebhook : "$MY_MS_TEAMS_WEBHOOK"
 # ...

Getting a MS Teams Webhook URL

Follow the Microsoft Teams Guide [https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook] for generating a webhook URL.

 version: v1.5.0

version: v1.5.0

Slack notifications from Helmsman

Starting from v1.4.0-rc, Helmsman can send slack notifications to a channel of your choice. To enable the notifications, simply add a slack webhook in the settings section of your desired state file. The webhook URL can be passed directly or from an environment variable.

[settings]
...
slackWebhook = $MY_SLACK_WEBHOOK

settings:
 # ...
 slackWebhook : "$MY_SLACK_WEBHOOK"
 # ...

Getting a Slack Webhook URL

Follow the slack guide [https://api.slack.com/incoming-webhooks] for generating a webhook URL.

 version: v3.0.0

version: v3.0.0

Use DRY-ed code in YAML

If you want to use as a baseline or deploy the DRY-ed example, please refer to the provided app templates

 version: v1.8.0

version: v1.8.0

Create namespaces

You can define namespaces to be used in your cluster. If they don’t exist, Helmsman will create them for you.

#...

[namespaces]
[namespaces.staging]
[namespaces.production]

#...

namespaces:
 staging:
 production:

The example above will create two namespaces; staging and production.

 version: v1.8.0

version: v1.8.0

Label & annotate namespaces

You can define namespaces to be used in your cluster. If they don’t exist, Helmsman will create them for you. You can also set some labels to apply for those namespaces.

#...

[namespaces]
[namespaces.staging]
 [namespaces.staging.labels]
 env = "staging"
[namespaces.production]
 [namespaces.production.annotations]
 "iam.amazonaws.com/role" = "dynamodb-reader"

#...

namespaces:
 staging:
 labels:
 env: "staging"
 production:
 annotations:
 iam.amazonaws.com/role: "dynamodb-reader"

The above examples create two namespaces; staging and production. The staging namespace has one label env= staging while the production namespace has one annotation iam.amazonaws.com/role=dynamodb-reader.

 version: v1.8.0

version: v1.8.0

Define resource limits for namespaces

You can define namespaces to be used in your cluster. If they don’t exist, Helmsman will create them for you. You can also define how much resource limits to set for each namespace.

You can read more about the LimitRange specification here [https://docs.openshift.com/container-platform/3.11/dev_guide/compute_resources.html#dev-limit-ranges].

#...

[namespaces]
[namespaces.staging]
 [[namespaces.staging.limits]]
 type = "Container"
 [namespaces.staging.limits.default]
 cpu = "300m"
 memory = "200Mi"
 [namespaces.staging.limits.defaultRequest]
 cpu = "200m"
 memory = "100Mi"
 [[namespaces.staging.limits]]
 type = "Pod"
 [namespaces.staging.limits.max]
 memory = "300Mi"
[namespaces.production]

#...

namespaces:
 staging:
 limits:
 - type: Container
 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 - type: Pod
 max:
 memory: "300Mi"
 production:

The example above will create two namespaces - staging and production - with resource limits defined for the staging namespace.

 version: v1.8.0

version: v1.8.0

Protecting namespaces

You can define namespaces to be used in your cluster. If they don’t exist, Helmsman will create them for you.

You can also define certain namespaces to be protected using the protected field. Please check this doc for details about what protection means and the difference between namespace-level and release-level protection.

#...

[namespaces]
[namespaces.staging]
[namespaces.production]
 protected = true

#...

namespaces:
 staging:
 production:
 protected: true

The example above will create two namespaces; staging and production. Where Helmsman sees the production namespace as a protected namespace.

 version: 3.3.0

version: 3.3.0

Define resource quotas for namespaces

You can define namespaces to be used in your cluster. If they don’t exist, Helmsman will create them for you. You can also define how much resource limits to set for each namespace.

You can read more about the Quotas specification here [https://kubernetes.io/docs/tasks/administer-cluster/manage-resources/quota-memory-cpu-namespace/#create-a-resourcequota].

#...
[namespaces]

 [namespaces.helmsman1]

 [namespaces.helmsman1.quotas]
 "limits.cpu" = "10"
 "limits.memory" = "30Gi"
 pods = "25"
 "requests.cpu" = "10"
 "requests.memory" = "30Gi"

 [[namespaces.helmsman1.quotas.customQuotas]]
 name = "requests.nvidia.com/gpu"
 value = "2"
#...

namespaces:
 helmsman1:
 quotas:
 limits.cpu: '10'
 limits.memory: '30Gi'
 pods: '25'
 requests.cpu: '10'
 requests.memory: '30Gi'
 customQuotas:
 - name: 'requests.nvidia.com/gpu'
 value: '2'

The example above will create one namespace - helmsman1 - with resource quotas defined for the helmsman1 namespace.

 version: v1.8.0

version: v1.8.0

Cluster connection – creating the kube context with certificates

Helmsman can create the kube context for you (i.e. establish connection to your cluster). This guide describe how its done with certificates. If you want to use bearer tokens, check this guide.

Creating the context with certs, requires both the settings and certificates stanzas.

If you use GCS, S3, or Azure blob storage for your certificates, you will need to provide means to authenticate to the respective cloud provider in the environment. See authenticating to cloud storage providers for details.

[settings]
 kubeContext = "mycontext" # the name of the context to be created
 username = "admin" # the cluster user name
 password = "$K8S_PASSWORD" # the name of an environment variable containing the k8s password
 clusterURI = "${CLUSTER_URI}" # the name of an environment variable containing the cluster API endpoint
 #clusterURI = "https://192.168.99.100:8443" # equivalent to the above

[certificates]
 caClient = "gs://mybucket/client.crt" # GCS bucket path
 caCrt = "s3://mybucket/ca.crt" # S3 bucket path
 # caCrt = "az://myblobcontainer/ca.crt" # Azure blob object
 caKey = "../ca.key" # valid local file relative path to the DSF file

settings:
 kubeContext: "mycontext" # the name of the context to be created
 username: "admin" # the cluster user name
 password: "$K8S_PASSWORD" # the name of an environment variable containing the k8s password
 clusterURI: "${CLUSTER_URI}" # the name of an environment variable containing the cluster API endpoint
 #clusterURI: "https://192.168.99.100:8443" # equivalent to the above

certificates:
 caClient: "gs://mybucket/client.crt" # GCS bucket path
 caCrt: "s3://mybucket/ca.crt" # S3 bucket path
 #caCrt: "az://myblobcontainer/ca.crt" # Azure blob object
 caKey: "../ca.key" # valid local file relative path to the DSF file

 version: v1.8.0

version: v1.8.0

Cluster connection – creating the kube context with bearer tokens

Helmsman can create the kube context for you (i.e. establish connection to your cluster). This guide describe how its done with bearer tokens. If you want to use certificates, check this guide.

All you need to do is set bearerToken to true and set the clusterURI to point to your cluster API endpoint in the settings stanza.

Note: Helmsman and therefore helm will only be able to do what the kubernetes service account (from which the token is taken) allows.

By default, Helmsman will look for a token in /var/run/secrets/kubernetes.io/serviceaccount/token. If you have the token else where, you can specify its path with bearerTokenPath.

[settings]
 kubeContext = "test" # the name of the context to be created
 bearerToken = true
 clusterURI = "https://kubernetes.default"
 # bearerTokenPath = "/path/to/custom/bearer/token/file"

settings:
 kubeContext: "test" # the name of the context to be created
 bearerToken: true
 clusterURI: "https://kubernetes.default"
 # bearerTokenPath: "/path/to/custom/bearer/token/file"

 version: v1.8.0

version: v1.8.0

Cluster connection – Using the current kube context

Helmsman can use the current configured kube context. In this case, the kubeContext field in the settings stanza needs to be left empty. If no other settings fields are needed, you can delete the whole settings stanza.

If you want Helmsman to create the kube context for you, see this guide for more details on creating a context with certs or here for details on creating context with bearer token.

 version: v1.8.0

version: v1.8.0

Cluster connection – Using an existing kube context

Helmsman can use any predefined kube context in the environment. All you need to do is set the context name in the settings stanza.

[settings]
 kubeContext = "minikube"

settings:
 kubeContext: "minikube"

In the examples above, Helmsman tries to set the kube context to minikube. If that fails, it will attempt to create that kube context. Creating kube context requires more infromation provided. See this guide for more details on creating a context with certs or here for details on creating context with bearer token.

 version: v1.13.0

version: v1.13.0

Using hiera-eyaml as backend for secrets’ encryption

Helmsman uses helm-secrets as a default solution for secrets’ encryption.
And while it is a good off-the-shelve solution it may quickly start causing problems when few developers start working on the secrets files simultaneously.
SOPS-based secrets can not be easily merged or rebased in case of conflicts etc.
That is why another solution for secrets organised in YAMLs was proposed in hiera-eyaml [https://github.com/voxpupuli/hiera-eyaml].

Example

Having environment defined with:

	example.yaml:

settings:
 eyamlEnabled: true

Helmsman will use hiera-eyaml gem to decrypt secrets files defined for applications.
They public and private keys should be placed in keys directory with names of public_key.pkcs7.pem and private_key.pkcs7.pem.
The keys’ path can be overwritten with

settings:
 eyamlEnabled: true
 eyamlPrivateKeyPath: ../keys/custom.pem
 eyamlPublicKeyPath: ../keys/custom.pub

_static/comment-bright.png

_images/multi-DSF.png
M

osF1 —— Appt —> Cl
Repo Helmsman
N
TN
N —

psF2 — | App2 cl
Repo Helmsman
N e
N
M

osFe —— Apps —> Cl

Repo
N

Helmsman

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/CI-pipeline-after-helm.jpg
Helm Chart A

templates
L0
Helm Chart B hanges trigger
templates. cl

ouild the Helm

charts and

applylupgrade

them on the
cluster.

®

script.sh

Helm

Apps

-

installiupgrade Helm|
releases on kBs
cluster.

®

_images/CI-pipeline-before-helm.jpg
App A
K8s
manifest
files

App B
K8s
maniest
fles

Q)

push
Johanges

trigger
cl

analyze the
changes and
decide what do

Cl

script.sh

apply changesto
KB cluster.

®

Apps

~

_images/CI-pipeline-helmsman.jpg
Apps
[Helm Charts]

Helm Charts
values.yaml

push

changes

Gesired_| [desired_| [desired

|state.Tom| |state.Tomi| |state.Tomi] Helmsman
Helmsman |4 [\

cluster1 cluster2 clusterd Conolner. Helm

Kubectl @

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.pn